Patterned growth of vertically-aligned ZnO nanorods on a flexible platform for feasible transparent and conformable electronics applications

نویسندگان

  • W. L. Ong
  • Q. X. Low
  • W. Huang
  • J. A. van Kan
  • G. W. Ho
چکیده

Despite the attractiveness of low temperature hydrothermal processes, the synthesis of vertical ZnO nanostructures has mostly been limited to rigid substrates. Moreover, patterned growth of nanostructures is also commonly carried out on rigid substrates, since conventional optical lithography is not easily applied to polymeric substrates, as focusing and reaction of the substrate with the organic solvent used in the lithography process prove to be a challenge. Here, we demonstrate the limited work on laser writing lithography patterned growth instead of the commonly used soft lithography patterned growth of nanorods on the transparent flexible substrate polyethylene terephthalate (PET) with a practical device demonstration. The visibly-transparent nanorods on the PET platform constitute a superior structural integrity with ohmic electro-conductivity even in a highly bent state. Accordingly, this can pave the way towards integration of vertically-aligned 1D nanostructures on a flexible platform for a transparent, conformable, shock-proof and lightweight product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays.

An effective approach is demonstrated for growing large-area, hexagonally patterned, aligned ZnO nanorods. The synthesis uses a catalyst template produced by a self-assembled monolayer of submicron spheres and guided vapor-liquid-solid (VLS) growth on a single crystal alumina substrate. The ZnO nanorods have uniform shape and length, align vertically on the substrate, and are distributed accord...

متن کامل

ZnO Microcrystals for Light Emitting Diode and Photovoltaic Applications with Integration on Flexible Substrates

We report a new integration approach to produce arrays of ZnO microcrystals for optoelectronic and photovoltaic applications. Demonstrated applications are n-ZnO/p-GaN heterojunction LEDs and photovoltaic cells. The integration process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium doped GaN substrates to define a narrow sub-100nm width nucleation region....

متن کامل

Vertically aligned nanostructures based on Na-doped ZnO nanorods for wide band gap semiconductor memory applications.

Vertically aligned undoped ZnO nanotips, nanotubes and nanorods were synthesized on the top facets of Na-doped ZnO nanorods without catalytic assistance under different growth times in a chemical vapor deposition system. The growth mechanism is discussed. The Na-doped nanorods were grown on a ZnO seed layer on Si. The p-type conductivity of the Na-doped nanorods was studied by temperature-depen...

متن کامل

Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation

We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density ver...

متن کامل

Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012